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LETTER TO THE EDITOR 

Canonical transformations to action and angle variables and 
their representations 

M Moshinsky? and T H Seligman 
Instituto de Fisica, UNAM, Apdo. Postal 20-364, MCxico 20, DF 

Received 5 March 1979 

Abstract. A representation on Hilbert space of canonical transformations to action and 
angle variables is given for a wide class of one-dimensional periodic motions. This extends 
the results discussed previously for the harmonic oscillator to problems not solvable in 
closed form. The concepts of ambiguity group and ambiguity spin continue to play a key 
role. 

In recent papers (Moshinsky and Seligman 1978a, b, 1979; referred to hereafter as 
MS1, MS2 and MS3) the authors have been interested in the representation in quantum 
mechanics of canonical transformations leading to action and angle variables. This is 
part of a general programme for representations of all (nonlinear as well as linear 
(Moshinsky and Quesne 197 1)) canonical transformations. 

So far we have been able to obtain the above representations for specific problems 
associated with the one-degree-of-freedom Hamiltonians of the oscillator (MS1) (both 
attractive and repulsive), free particle (MS1) and particle in a Coulomb potential (MS3). 
All these problems can be solved exactly, both in classical and quantum mechanics, and 
our proofs (MS 1-3) were based on their explicit dynamical groups or, more specifically, 
on their spectrum-generating algebras. 

The purpose of this Letter is to show that the problem may be treated in a quite 
general fashion using semi-classical approximations as given in standard textbooks 
(Landau and Lifshitz 1959). We shall specifically consider Hamiltonians giving rise to 
closed orbitals only, as these are the cases where action variables can always be defined 
(Goldstein 1957). Also we wish to avoid singularities in this brief communication, and 
thus we propose a Hamiltonian of the form 

where the mass of the particle is 1, and the potential V(4)  is a continuous function of q 
bounded from below and increasing monotonically to 00 for 141 + 00 on both sides of a 
single minimum. Without loss of generality we may choose this minimum at q = 0 with 
V(0) = 0. Obviously the motion is periodic, and thus the corresponding quantum- 
mechanical Hamiltonian (for which we take A = 1 and replace p by -ia/dq) has only a 
discrete spectrum. 

Before proceeding further, we wish to remark that reference MS1 will be the basis 
for understanding this paper, with the change-discussed in MS2 and MS3-that our 
solutions will be presented in configuration rather than momentum space. 
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To determine the action and angle variables for the H of equation (1) we first note 
that the canonically conjugate variable to H is the time t(4,  p )  defined by 

where after carrying out the integration H is replaced by its value on the right-hand side 
of (1). Clearly (Goldstein 1975) then t and H are canonically conjugate variables. 

In turn the action variable can be defined by (Goldstein 1975) 

where 4+, 4- are the two solutions of V(4,) = H. The integral in (3) starts from the 
value 0 at H = 0 and increases monotonically, and thus we take it as defining the 
absolute value (MS1-3) of the action variable IQ1 rather than the action variable itself. 
As discussed in the previous references (MS1-3), the canonically conjugate variable to 
IQ1 is not P but PQ/lQl, and in this case is given by 

P Q I I Q I = - ( ~ H / ~ ~ ) ~ ( ~ , P ) ~ ~ ( ~ , P ) .  (4) 

In (4) 4(4, p )  is the angle variable which obviously satisfies the Poisson bracket relation 
{4, J}q,p = 1 as, from the monotonic relation between J and H, dH/dJ  is the reciprocal 
of dJ/dH. 

The periodic nature of the motion then indicates that any observable f ( 4 , p )  
considered as a function of J, 4 can be expanded in a Fourier series: 

Therefore, in particular, both 4 and p are amenable to this type of expansion, and from 
(3) and (4) we conclude that they are functions of IQ1 and exp(iPQ/IQI) only. As the 
latter are invariant under the transformations 

Q+Q,  P -* P + 2m77, m integer; Q+-Q, P+-P ,  (6) 

the mapping between the phase spaces 4, p and Q, P is non-bijective (MS1). 
Thus for the transformations to action and angle variables of Hamiltonians in which 

V(4) is defined as in (l), there exists an ambiguity group, i.e. the semi-direct product 
T A  I where, as indicated in (6), T are translations by 2m77 and I inversions, that 
connect all points Q, P in the action-angle phase space mapped on a single point in the 
original phase space 4, p .  As is well known (MS1) the irreducible representations of 
T A I  are characterised by a real number A ’  in the interval OsA’< 1, and, as these 
representations are two-dimensional, they require also the extra index U’ = kl for the 
specification of its row. 

As indicated in reference MS1 €or the oscillator, whose potential is of the type 
discussed in (l), the presence of an ambiguity group requires a double infinity of sheets 
in the original 4, p phase space to make the mapping to the new phase space Q, P 
bijective. In quantum mechanics this in turn implies (MS1) that the states in the original 
Hilbert space may be characterised by both the eigenvalue of the position operator and 
the indices A ‘U‘ associated with the irreducible representation of the ambiguity group, 
i.e. the ambiguity spin. Thus the representation in quantum mechanics of the canonical 
transformation leading to action and angle variables of the oscillator (MSl), where we 
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Consider now an operator related to an arbitrary observable f(q, p). The expec- 
tation value of this observable with respect to the state (1 1) is given by 

where 

(13) 

In view of the restrictions on the wavefunction (1 1) we note that, by writing m = n - s, 
we can make the following assumptions (Landau and Lifshitz 1959), 

(n -slfln)=(ii -slflfi), an+s an, (14) 

and thus from (12) and the normalisation condition x,, a:an = 1 we get 

f - x  (ii -slflii> exp{is[-(dH/dJ)t]}. 
4 

The exponential in (15) is obtained from the fact that 

En-s - En ( n - s ) - n  

and, in view of the restrictions on the wavefunction (1 1) and the relation (Landau and 
Lifshitz 1959) between J and n, the term in parentheses on the right-hand side of (16) 
can be substituted by the dH/dJ  evaluated at J = ii. 

From the definition (4) of the angle q5 we see that in (15) we recover the classical 
Fourier expansion (3, where the coefficients are 

h(J) = ( f i  -s l f I f iL  J = A. (17) 

We now proceed to find the classical limits of the operators associated with IQ], 
exp(iPQ/(QI) whose matrix elements are given by (10). As discussed in references 
MS1-3, the unit matrix ~ ~ 6 ( A ’ - A ’ ’ ) ~ w ~ , + f ~ ~  is still retained in the classical limit, and so we 
need only consider the matrix elements of the operators associated with IQ\, 
exp(iPQ/IQI) modulo this unit matrix. From (10) and (13) we obtain 

where we have disregarded A ’  in the range O s A ‘ C  1 as compared with ii. From (15), 
(17) and (18) we then recover the defining equations (8) of the classical canonical 
transformations. 

We have thus proved that (7) is the representation of the canonical transformation 
leading to action and angle variables of a general Hamiltonian of the type (1). The 
concepts of ambiguity group and ambiguity spin continue to be essential in the 
derivation of the representation. 

Furthermore we can now also represent the canonical transformation connecting 
two Hamiltonians of type (1) by combining the representation of the canonical 
transformation going to the action and angle variable of the first Hamiltonian with the 
inverse of the corresponding one for the second. 
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The arguments outlined above suggest the extension to more general Hamiltonians, 
where an adequate generalisation of the concept of action variable and a WKB analysis 
of the problems will be required. Work in this direction is under way in collaboration 
with J Deenen. 
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